Information-Theoretic Measures Predict the Human Judgment of Rhythm Complexity

نویسندگان

  • Remi de Fleurian
  • Tim Blackwell
  • Oded Ben-Tal
  • Daniel Müllensiefen
چکیده

To formalize the human judgment of rhythm complexity, we used five measures from information theory and algorithmic complexity to measure the complexity of 48 artificially generated rhythmic sequences. We compared these measurements to human prediction accuracy and easiness judgments obtained from a listening experiment, in which 32 participants guessed the last beat of each sequence. We also investigated the modulating effects of musical expertise and general pattern identification ability. Entropy rate and Kolmogorov complexity were correlated with prediction accuracy, and highly correlated with easiness judgments. A logistic regression showed main effects of musical training, entropy rate, and Kolmogorov complexity, and an interaction between musical training and both entropy rate and Kolmogorov complexity. These results indicate that information-theoretic concepts capture some salient features of the human judgment of rhythm complexity, and they confirm the influence of musical expertise on complexity judgments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Running head: PERCEPTUAL VALIDITY OF INFORMATION-THEORETIC MEASURES OF RHYTHM COMPLEXITY

In order to identify a perceptually valid measure of rhythm complexity, we used five measures from information theory and algorithmic complexity to measure the complexity of 48 artificially generated rhythmic sequences. We compared these measurements to human implicit and explicit complexity judgments obtained from a listening experiment, in which 32 participants guessed the last beat of each s...

متن کامل

Rhythm Complexity Measures: A Comparison of Mathematical Models of Human Perception and Performance

Thirty two measures of rhythm complexity are compared using three widely different rhythm data sets. Twenty-two of these measures have been investigated in a limited context in the past, and ten new measures are explored here. Some of these measures are mathematically inspired, some were designed to measure syncopation, some were intended to predict various measures of human performance, some a...

متن کامل

Measuring Musical Rhythm Similarity: Edit Distance versus Minimum-Weight Many-to-Many Matchings

Musical rhythms are represented as binary symbol sequences of sounded and silent pulses of unit-duration. A measure of distance (dissimilarity) between a pair of rhythms commonly used in music information retrieval, music perception, and musicology is the edit (Levenshtein) distance, defined as the minimum number of symbol insertions, deletions, and substitutions needed to transform one rhythm ...

متن کامل

SOME SIMILARITY MEASURES FOR PICTURE FUZZY SETS AND THEIR APPLICATIONS

In this work, we shall present some novel process to measure the similarity between picture fuzzy sets. Firstly, we adopt the concept of intuitionistic fuzzy sets, interval-valued intuitionistic fuzzy sets and picture fuzzy sets. Secondly, we develop some similarity measures between picture fuzzy sets, such as, cosine similarity measure, weighted cosine similarity measure, set-theoretic similar...

متن کامل

The Comparison of human judgment, help- seeking and social acceptability in students with and without dyslexia

The present study was conducted to the comparison of human judgment, help-seeking and social acceptability in students with and without in dyslexia. The research method was a causal comparison of post-event type. The statistical population of the study consisted of all students with particular reading disabilities in the primary school of Rasht in the first half of the academic year 2017-2018. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cognitive science

دوره 41 3  شماره 

صفحات  -

تاریخ انتشار 2017